Impact of *Leptographium terebrantis*Inoculum Density on Loblolly Pine Physiology

Pratima Devkota, John K. Mensah, Ryan L. Nadel and Lori G. Eckhardt

Forest Health Dynamics Laboratory, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA

Forest Health Dynamics Laboratory

- 3

Forest Health Dynamics Laborator

Introduction

Leptographium terebrantis

- Lesions in the root epidermis and phloem
- Occlusion blocking water movement through vascular tissues
- Alter plant physiology

ool of Forestry and Wildlife Sciences, Aubur

Forest Health Dynamics Laborator

Introduction

Pine Decline

- Thinned crown
- Chlorotic needles
- Detoriation of roots
- Premature decline
- Mortality

Inoculum density of fungi?

nool of Forestry and Wildlife Sciences, Aubu

Forest Health Dynamics Laborator

Objectives

- 1. To determine the most pathogenic *Leptographium terebrantis* isolate
- 2. To understand the growth of different inoculum densities of $\it L.\ terebrantis$ isolate in loblolly pine bolts and stem
- 3. Determine hydraulic conductivity in loblolly pine stems infected by *L. terebrantis*
- 4. Develop regression equations relating inoculum density, tissue occlusions and hydraulic conductance in loblolly pine

shool of Forester and Wildlife Sciences Auburn Uni

orest Health Dynamics Laborator

Leptographium terebrantis Isolate Screening (Objective 1)

- Single family of loblolly pine
 Completely Randomized
 Design
 - 42 Isolates of L. terebrantis inoculation
- For 8 weeks
- Measurements Lesion and vascular tissue occlusion

of Forestry and Wildlife Sciences, Aubu

orest Health Dynamics Laboratory

Objectives

- 1. To determine the most pathogenic *Leptographium terebrantis* isolate
- 2. To understand the growth of different inoculum densities of *L. terebrantis* isolate in loblolly pine bolts and stem
- 3. Determine hydraulic conductivity in loblolly pine stems infected by $\it L.\ terebrantis$
- 4. Develop regression equations relating inoculum density, tissue occlusions and hydraulic conductance in loblolly pine

ol of Forestry and Wildlife Sciences, Auburn

Forest Health Dynamics Laborator

Background

- Stem Hydraulic Conductance
 - Movement of water through stem
 - Capacity of stem to supply water to photosynthetic active tissues
 - Environmental stress
 - Plant pathogens

had of Farastay and Wildlife Sciences Auburn Univers

Forest Health Dynamics Laboratory

Objectives

- 1. To determine the most pathogenic *Leptographium terebrantis* isolate
- 2. To understand the growth of different inoculum densities of *L. terebrantis* isolate in loblolly pine bolts and stem
- 3. Determine hydraulic conductivity in loblolly pine stems infected by $\it L. terebrantis$
- 4. Develop regression equations relating inoculum density, tissue occlusions and hydraulic conductance in loblolly pine

hool of Forestry and Wildlife Sciences, Auburn Univ

Forest Health Dynamics Laborator

Methods

- Healthy loblolly trees
 - No signs & symptoms of disease
 - Diameters: 2-3 inches at ground level diameter
- 25 trees per treatment in a completely randomized design
- L. terebrantis Was cultured on toothpicks and used to inoculate the trees after colonization
- A second experiment will be set-up in July using different diameter class of loblolly pine

hand of Franchis and Mildlife Colonian Assistant Unit

Methods • Five treatments - Two inoculation points (IP) at 180° apart (2IP) - Four at 90° apart (4IP) - Eight 45° apart (8IP) - Sixteen 22.5° apart (16IP) - Control

orest Health Dynamics Laboratory

Methods

- Post inoculation assessment will be done on 8th week to determine
 - Size of occluded tissue
 - Hydraulic conductance

of Forestry and Wildlife Sciences, Auburn

Methods - Set-up for Measuring Hydraulic Conductance
A-vacuum pump B-flask C-hot plate D-water tank E-stem segment F-balance and beaker F-HDL
School of Forestry and Wildlife Sciences, Auturn University

_	7		
7	7		

Acknowledgements Dr. Lori G. Eckhardt Dr. Ryan L. Nadel Dalton Smith Sarah Peaden Andrea Cole Shrijana Duwadi Forest Health Dynamics Laboratory Forest Health Cooperative Undergraduate Students Acknowledgements AUBURN AUBURN ENTYRALITY AUBURN ENTYRALITY AUBURN ENTYRALITY AUBURN ENTYRALITY AUBURN ENTYRALITY ENTYRALITY AUBURN ENTYRALITY ENTYRALITY AUBURN ENTYRALITY ENTYR